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Hyperspectral feature recognition based on kernel PCA and
relational perspective map
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A novel joint kernel principal component analysis (PCA) and relational perspective map (RPM) method
called KPmapper is proposed for hyperspectral dimensionality reduction and spectral feature recognition.
Kernel PCA is used to analyze hyperspectral data so that the major information corresponding to features
can be better extracted. RPM is used to visualize hyperspectral data through two-dimensional (2D) maps,
and it is an efficient approach to discover regularities and extract information by partitioning the data into
pieces and mapping them onto a 2D space. The experimental results prove that the KPmapper algorithm
can effectively obtain the intrinsic features in nonlinear high dimensional data. It is useful and impressing
for dimensionality reduction and spectral feature recognition.
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Hyperspectral data can provide fine and detailed spec-
tral information by contiguous spectral range and nar-
row spectrum interval. As a result, some important
and typical spectral features that cannot be expressed
in broadband remote sensed data will be revealed and
extracted obviously, which is significant to target identi-
fication, endmember extraction, anomaly diagnosis, fine
classification, and sophisticated applications of remote
sensing[1−3]. But for the given spectra acquired from field
measurement with spectrometer or pixels on hyperspec-
tral remote sensing image by aerial or spaceborne sensors,
how to extract those significant features that can char-
acterize the objects is still the most important topic for
hyperspectral applications. Two critical issues arise from
the above situations. One is “Hughes phenomenon”[4]

caused by high dimensionality; the other is spectral fea-
ture recognition.

Dimensionality reduction (DR) is the approach to elim-
inate the impact of “Hughes phenomenon”. Gener-
ally speaking, there are two kinds of DR approaches:
one is band selection that selects some interesting
bands or those bands with more information and
weak inter-correlations; the other is feature extrac-
tion, which compresses all bands by certain mathematic
transformation[5]. In the past few years, many DR
methods have been presented in remote sensing with
linear techniques such as principal component analysis
(PCA)[6], linear discriminant analysis (LDA)[7], indepen-
dent component analysis (ICA)[8], and so on. However,
the nonlinear features which can be the major properties
in spectral space for hyperspectral data are ignored.

On the other hand, different methods to extract char-
acteristic spectral features have been researched in the
recent years[9,10]. Manifold learning, as a new approach,
has been applied to high dimensional data[11,12], and it
can model the nonlinear features (manifold) of high di-
mensional data, while the nonlinear properties are well
preserved. Such manifold learning algorithms as kernel
PCA (KPCA)[13], multi-dimensional scaling (MDS)[14],

isometric mapping (ISOMAP)[11], diffusion maps[15], lo-
cal linear embedding[12,16], Laplacian eigenmap[17], and
local tangent space alignment[18] have devoted to pattern
recognition and machine learning while ignoring their ap-
plications in hyperspectral remote sensing. In fact, those
manifold learning algorithms are able to efficiently reveal
geometrical structures and regularities which indwell in
high dimensional space from hyperspectral data[19]. In
this letter, a novel joint KPCA and relational perspec-
tive map (RPM) method called KPmapper for DR and
spectral feature recognition is proposed. Experiments are
designed to validate the performance of the proposed al-
gorithm.

PCA is one of the classic linear algorithms in pattern
recognition[6]. Its nonlinear version, KPCA, is used to
deal with hyperspectral data in this letter. The details
of KPCA algorithm can be found in Ref. [13]. Sup-
pose that there is a dataset of centered random vector
X ∈ Rn with N observations xi, i ∈ [1, · · · , N ]. Firstly,
we mapped the data onto another dot product space Qd

by φ : Rn → Qd,X → φ(X). The covariance matrix

φ(X) can be defined as Cφ(X ) = 1
N

N∑
i=1

φ(xi)φ(xi)T. Let

v ∈ Qd(v 6= 0) be an eigenvector of Cφ(X) that corre-
sponds to a positive eigenvalue λ of Cφ(X). Similar to
PCA, we can get

λv = Cφ(X )v, (1)

where v =
N∑

i=1

αiφ(xi) is lying in the span of

{φ(x1), φ(x2), · · · , φ(xN )}. In addition, by multiplying
Eq. (1) with φ(xk) from the left and substituting the
value of v into it, we can get λφ(x) ·vk = φ(x) ·Cφ(x) ·vk,

where vk =
N∑

i=1

αk
i φ(xi), k ∈ [1, N ]. In order to construct

the kernel function, we defined an N × N matrix K as
Ki,j = φ(xi) · φ(xj) = k(xi, xj). Consider an eigenvalue
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decomposition for the expansion of αk by using the ker-
nel matrix K as

λαk = Kαk, (2)

where αk = (αk
1 , αk

2 , · · · , αk
N )T. The solution of Eq. (2)

(λk, αk) has to be normalized by λk(αk ·αk) = 1 and be
centered by substituting centered Kc for the matrix K.
Kc is given by

Kc = K− 1N ·K + 1N ·K · 1N , (3)

where 1N is an N × N matrix whose elements are all
equal to 1/N . To get the k first principal components,
φ(x) is mapped on the vector vk, namely,

vk · φ(x) =
N∑

i=1

αk
i (φ(xi) · φ(x)) =

N∑

i=1

αk
i k(xi, x). (4)

In this letter, Gaussian kernel is used for hyperspectral
data, that is,

KGauss(xi, xj) = exp(−‖xi − xj‖2). (5)

Then, the hyperspectral data can be processed by KPCA
algorithm with Gaussian kernel.

As a new unsupervised learning algorithm, RPM[20]

provides a new approach for hyperspectral data pro-
cessing. Its general ideas are as follows: the points in
the high dimensional space can be represented by some
independent variables, and a manifold in a high dimen-
sional observed space is formed by those finite interactive
variables; then the dimensionality can be reduced by un-
folding the curled manifold in the observed space or
finding the main internal variables. Its main objective is
to extract the intrinsic geometrical structures and reg-
ularities from the dataset which indwells in the space
when the space is represented as a manifold. Figure 1
depicts the model of the RPM method. It first maps
data points onto the surface of a torus, then onto the
flat rectangle by a vertical and a horizontal cut. RPM
focuses on short distance information, while relaxing the
constraints posed by long distance information.

Let the distance matrix of X be δij , where i, j =
1, · · · , N. The RPM algorithm maps data points xi

into image points ti in a two-dimensional (2D) space
(torus surface) with visual distance dij between the
image points. So, the image points ti, i ∈ [1, · · · , N ]
provide a 2D visualization of distance transforma-
tion of the initial data. Furthermore, δij and dij are
the relational distance and image distance matrix, re-
spectively. Mathematically, RPM uses the gradient
descent algorithm to minimize the following energy

Fig. 1. Model of the RPM method[20,21].

function:

Ep =
∑

i<j

δij

pdp
ij

(6)

with E0 = − ∑
i<j

δij ln(dij), where p is the rigidity, a pa-

rameter that controls how strong the algorithm biases
local distance information, and p can be a value between
–1 and +∞. The forces between the points are defined
by

fij =
∂Ep

∂dij
= − δij

dp+1
ij

, i < j. (7)

Assume that T = [0, w]× [0, h] ∈ R2 denotes the rect-
angle plane of width w and height h in the 2D Cartesian
coordinate system, a torus mapping can be represented
as a visualization of

ϕ : X → T, xi → ti = (xi, yi). (8)

Then the distance between ti and tj from T can be
defined as

d(ti, tj) = min(|xi − xj | , w − |xi − xj |)
+min(|yi − yj | , h− |yi − yj |). (9)

With the above distance function, the opposite edges of
T are actually stuck together, so that it becomes topo-
logically equivalent to a torus in Fig. 1. The goal of
RPM algorithm is thus to find a torus mapping φ in Eq.
(8) that minimizes Eq. (6).

The RPM algorithm adopts the Newton-Raphson (NR)
method to minimize Eq. (6). So, we can get the first and
second order partial derivatives of E with respect to all
variables xi and yi:

∂E

∂xi
=

∑

k 6=i

− δik

dp+1
ik

∂dik

∂xk
=

∑

k 6=i

hikfik,

∂2E

∂x2
i

= (p + 1)
∑

k 6=i

fik

hik
, (10)

where hik = ∂dik/∂xk. Then we can get the iterative
formula to find the minimum energy by

x
(m+1)
i = x

(m)
i − ∂E/∂x

∂2E/∂x2

= x
(m)
i − 1

p + 1

∑
k 6=i

hikfik

∑
k 6=i

fik/hik
. (11)

Replacing the constant 1
p+1 in Eq. (11) by a parameter

cm = ram, which is the learning speed at the step m, we
can get the modified version as

x
(m+1)
i = x

(m)
i − c(m)

∑
k 6=i

hikfik

∑
k 6=i

fik/hik
. (12)

In addition, c(m) should approach zero as m increases,
and r is the initial learning speed, a ∈ (0; 1). Both r and
a are determined empirically.



August 10, 2010 / Vol. 8, No. 8 / CHINESE OPTICS LETTERS 813

Fig. 2. Original curves of Calcite data from USGS spectral
library.

From the above analysis, we can see that KPCA al-
gorithm has the ability of nonlinear DR for high dimen-
sional data by mapping the original data into a featured
space. RPM is a robust tool for extracting intrinsic
geometrical structure and regularities by mapping the
data onto a 2D space without overlapping. The above
two points encourage us to use them together for DR
and spectral feature recognition. So, a novel DR and
spectral feature recognition method called KPmapper,
which combines KPCA and RPM, is put forward as the
following steps.

1) Calculate the centered vector X ⇐ X − E{X}
of original data X ∈ Rn with N observations xi, i ∈
[1, · · · , N ].

2) Get the Gaussian kernel matrix and the entered Kc

with Eqs. (5) and (3), respectively.
3) Extract the first k principal components by Eq. (4).
4) Select a mapping φ that maps k first principal com-

ponents to randomly selected points {(x(0)
i , y

(0)
i ) ∈ T |i =

1, · · · , N}, set m = 0.

5) Calculate x
(m+1)
i and y

(m+1)
i according to Eq. (12).

6) If the total change of
N∑

i=1

∣∣x(m+1)
i − x

(m)
i

∣∣ +
∣∣y(m+1)

i

− y
(m)
i

∣∣ is smaller than a threshold (e.g., 1× 10−5), go to
step 7.

7) Set m = m + 1; go to step 5.

8) If the total change of
N∑

i=1

∣∣x(m+1)
i − x

(m)
i

∣∣ +
∣∣y(m+1)

i −y
(m)
i

∣∣ is greater than a threshold (e.g., 1×10−5),
stop.
It should be noted that the image coordinates are con-
strained to a limited space (that is topologically equiva-
lent to the surface of a torus) so that the image distances
dij cannot grow unlimited.

To validate the proposed method, we designed some
experiments. The spectral data used in this letter were
obtained from US Geological Survey (USGS) spectral
library (http://speclab.cr.usgs.gov/spectral-lib.html).
There are 499 spectral data of 444 objects, of which
the Calcite CO2004 collected in Alligator Ridge Mine,
Nevada was selected as the test example data to val-
idate our proposed method. The spectral data rang-
ing from 0.2 to 3.0 µm are corrected to absolute re-
flectance using a US National Institute of Standards and
Technology (NIST) Halon standard and can be used as
the reference in objects recognition. Figure 2 depicts
the original curve map for the Calcite data, and each

Table 1. Principal Component Results with
Gaussion Kernel

Component P0 P1 P2 P3 P4 P5 P6

Gaussian 0.2057 0.0539 0.0077 0.0033 0.0018 0.0006 0.0003

Contribution (%) 75.27 19.72 2.82 1.21 0.66 0.22 0.11

Fig. 3. Gaussion kernel results of KPCA (colorful online).

Fig. 4. 2D RPM mapping for Calcite CO2004.

record in the dataset is taken as an internal body object
randomly positioned in the map.

In the experiment, the spectral data of Calcite CO2004
was processed by KPCA algorithm with Gaussian kernel
and 7 principal components were obtained. It should be
noted that the Gaussian kernel parameter γ is set as 1.
From the results shown in Table 1, we can see that the
first three principal components contribute to 97.8% of
all components. KPCA results map is shown in Fig. 3
and the records which have the same characteristics are
concentrated in the same regions.

The data derived from KPCA is then partitioned into
pieces and mapped into a 2D space without overlapping
using RPM algorithm. In RPM, the learning speed pa-
rameters r and a are set to 0 at the beginning, and they
will change in the next steps. Figure 4 shows the re-
sults using RPM algorithm, and all the data points are
mapped into the 2D map which also called torus surface.
From Refs. [20] and [21], we can see that the relations
between the values of the parameters w (the width of the
rectangle plane), h (the height of the rectangle plane),
and the visualization of hyperspectral data are hard to
determine. In order to get the best visualization results,
10 experiments have been done for every couple of pa-
rameters w and h (for example, w = 100, h = 100 or w
= 100, h = 1000), and it is found that when w = h =
100, the results are the best (Fig. 4).

From Fig. 4, we can see that all the spectral points are
partitioned into four parts; like the clustering algorithm,
the points which have the nearer distance are mapped
in the same group such as the red, cyan, yellow (B), and
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Fig. 5. Original curve and derived spectral absorption fea-
tures using KPmapper method for Calcite CO2004.

green (A) groups on the 2D map. In the results, some
most important spectral features are extracted and the
points with the same characteristics are clustering into
one group. Combining Fig. 4 with Fig. 5, we can get the
following results. The red group presented the curve that
between 0.2131 and 0.859 µm in the whole origin spectral
curve of Calcite CO2004, the cyan group between 0.871
and 1.4785 µm, the yellow (B) group between 1.4835 and
2.115 µm, and the green (A) group between 2.125 and
2.976 µm.

Meaningful results can be found from Figs. 4 and 5 if
we take the spectral absorption features of Calcite into
consideration. We know that Calcite has three main ab-
sorption features of anion CO2−

3 located in 2.3 – 2.4, 2.1
– 2.2, and 2.5 µm, respectively and one main absorption
feature of H2O located at 1.9 µm[22]. By comparing the
extracted feature results of KPmapper with the original
Calcite CO2004 data, we can see that the A and B groups
are in fact the absorption features of CO2−

3 and H2O, re-
spectively. It illustrated that our proposed method is an
effective tool for spectral feature recognition. In addi-
tion, we can use this method for mineral identification
and geological mapping in the future.

The experimental results also proved that KPCA al-
gorithm has powerful ability for DR using a nonlinear
method. RPM is more preferable to reveal details in an
easy way by partitioning complex dataset and present-
ing them in a non-overlapping manner. From geometric
point of view, our proposed KPmapper algorithm has
combined advantages of these two algorithms, it can vi-
sualize data through 2D maps and reveal the important
features directly to the human eyes; it has extremely high
capability for DR and pattern recognition.

It should be noted that although only Calcite CO2004
experiment is considered, we have tested all the Calcite
and some other mineral objects spectrum data in the
USGS spectral library, and the experimental results are
similar. These results are not included here.

In conclusion, we propose a novel method for DR and
spectral feature recognition, which is called KPmapper,
based on KPCA and RPM algorithms. Instead of the
original data for RPM, the eigenvalue data derived from

KPCA are analyzed and used as the input of RPM. By
the experiments on the spectral data from USGS spec-
tral library, it is proved that the proposed approach can
be used in hyperspectral DR, and is suitable to dis-
cover spectral features, effectively identify and discrimi-
nate typical minerals based on their spectra.
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